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Abstract. The search for a suitable golf course is a very important issue
in the travel plans of any modern manager. Modern management is also
infamous for its penchant for high-tech gadgetry. Here we combine these
two facets of modern management life. We aim to provide the cutting-
edge manager with a method of finding golf courses from space!
In this paper, we present Genie: a hybrid evolutionary algorithm-based
system that tackles the general problem of finding features of interest in
multi-spectral remotely-sensed images, including, but not limited to, golf
courses. Using this system we are able to successfully locate golf courses
in 10-channel satellite images of several desirable US locations.

1 Introduction

There exist huge volumes of remotely-sensed multi-spectral data from an ever-
increasing number of earth-observing satellites. Exploitation of this data requires
the extraction of features of interest. In performing this task, there is a need for
suitable analysis tools. Creating and developing individual algorithms for specific
feature-detection tasks is important, yet extremely expensive, often requiring a
significant investment of time by highly skilled analysts. To this end we have
been developing a system for the automatic generation of useful feature-detection
algorithms using an evolutionary approach.
The beauty of an evolutionary approach is its flexibility: if we can derive a

fitness measure for a particular problem, then it might be possible to solve that
problem. Many varied problems have been successfully solved using evolution-
ary computation, including: optimization of dynamic routing in telecommunica-
tions networks [1], optimizing image processing filter parameters for archive film
restoration [2], designing protein sequences with desired structures [3] and many
others.
When taking an evolutionary approach, a critical issue is how one should

represent candidate solutions in order that they may be effectively manipulated.
We use a genetic programming (GP) method of representation of solutions, due
to the fact that each individual will represent a possible image processing algo-
rithm. GP has previously been applied to image-processing problems, including:



edge detection [4], face recognition [5], image segmentation [6], image compres-
sion [7] and feature extraction in remote sensing images [8–10]. The work of
Daida et al. [8], Brumby et al. [9] and Theiler et al. [10] is of particular relevance
since it demonstrates that GP can be employed to successfully evolve algorithms
for real tasks in remote-sensing applications.

2 System Overview

We call our feature detection system “Genie” (GENetic Image Exploitation) [9,
10] Genie employs a classic evolutionary paradigm: a population of individuals
is maintained and each individual is assessed and assigned a fitness value. The
fitness of an individual is based on an objective measure of its performance
in its environment. After fitness determination, the evolutionary operators of
selection, crossover and mutation are applied to the population and the entire
process of fitness evaluation, selection, crossover and mutation is iterated until
some stopping condition is satisfied.

2.1 Training Data

The environment for each individual in the population consists of data planes,
each plane corresponding to the image in a separate spectral channel, together
with a weight plane and a truth plane. The weight plane identifies the pixels to
be used in training, and the truth plane locates the features of interest in the
training data. The data in the weight and truth planes may be derived from
actual ground truth (collected on the ground, at the time the image was taken)
or from the best judgement of an analyst looking at the data. Since true ground
truth is so expensive, our system employs a Java-based tool called Aladdin
to assist the analyst in making judgements about and marking up the data.
Through Aladdin, the analyst or user can view a multi-spectral image in a
variety of ways, and can mark up training data by painting directly on the
image using the mouse. Training data is ternary-valued with the possible values
being “true”, “false”, and “unknown”. True defines areas where the analyst is
confident that the feature of interest does exist. False defines areas where the
analyst is confident that the feature of interest does not exist. Fig. 1 shows
a screen capture of an example session. Here the analyst has marked out golf
courses as of interest.

2.2 Encoding Individuals

Each individual chromosome in the population consists of a fixed-length string
of genes . Each gene in Genie corresponds to a primitive image processing op-
eration, and so the whole chromosome describes an algorithm consisting of a
sequence of primitive image processing steps.



Fig. 1. GUI for Training Data Mark-Up. Note that Aladdin relies heavily on color,
which does not show up well in this image. The light colored patches in the center-right
and upper-right parts of the image are two golf courses that have been marked up as
“true”. Most of the rest of the image has been marked up as “false”, except for a small
region around the golf courses which has been left as “unknown”.

Fig. 2. Software Architecture of the System Described. Note that the feature depicted
on the right of this diagram represents the input data, training data and scratch planes



Genes and Chromosomes A single gene consists of an operator name, plus
a variable number of input arguments, specifying where input is to come from;
output arguments, specifying where output is to be written to; and operator
parameters, modifying how the operator works. Different operators require dif-
ferent numbers of parameters. The operators used in Genie take one or more
distinct image planes as input, and generally produce a single image plane as
output. Input can be taken from any data planes in the training data image
cube. Output is written to one of a small number of scratch planes— temporary
workspaces where an image plane can be stored. Genes can also take input from
scratch planes, but only if that scratch plane has been written to by another
gene positioned earlier in the chromosome sequence.

The image processing algorithm that a given chromosome represents can
be thought of as a directed acyclic graph where the non-terminal nodes are
primitive image processing operations, and the terminal nodes are individual
image planes extracted from the multi-spectral image used as input. The scratch
planes are the ‘glue’ that combines together primitive operations into image
processing pipelines. Traditional GP ([11]) uses a variable sized (within limits)
tree representation for algorithms. Our representation differs in that it allows
for reuse of values computed by sub-trees since many nodes can access the same
scratch plane, i.e. the resulting algorithm is a graph rather than a tree. It also
differs in that the total number of nodes is fixed (although not all of these may
be actually used in the final graph), and crossover is carried out directly on the
linear representation.

We have restricted our “gene pool” to a set of useful primitive image process-
ing operators. These include spectral, spatial, logical and thresholding operators.
Table 1 outlines these operators. For details regarding Laws textural operators,
the interested reader is referred to [12, 13].

The set of morphological operators is restricted to function-set processing
morphological operators, i.e. gray-scale morphological operators having a flat
structuring element. The sizes and shapes of the structuring elements used by
these operators is also restricted to a pre-defined set of primitive shapes, which
includes, square, circle, diamond, horizontal cross and diagonal cross, and hori-
zontal, diagonal and vertical lines. The shape and size of the structuring element
are defined by operator parameters. Other local neighborhood/windowing oper-
ators such as mean, median, etc. specify their kernels/windows in a similar way.
The spectral operators have been chosen to permit weighted sums, differences
and ratios of data and/or scratch planes.

We use a notation for genes that is most easily illustrated by an example: the
gene [ADDP rD0 rS1 wS2] applies pixel-by-pixel addition to two input planes,
read from data plane 0 and from scratch plane 1, and writes its output to scratch
plane 2. Any additional required operator parameters are listed after the input
and output arguments.

Note that although all chromosomes have the same fixed number of genes,
the effective length of the resulting algorithm graph may be smaller than this.
For instance, an operator may write to a scratch plane that is then overwritten



Table 1. Image Processing Operators in the Gene Pool

Code Operator Description Code Operator Description

ADDP Add Planes MEAN Local Mean
SUBP Subtract Planes VARIANCE Local Variance
ADDS Add Scalar SKEWNESS Local Skewness
SUBS Subtract Scalar KURTOSIS Local Kurtosis
MULTP Multiply Planes MEDIAN Local Median
DIVP Divide Planes SD Local Standard Deviation
MULTS Multiply by Scalar EROD Erosion
DIVS Divide by Scalar DIL Dilation
SQR Square OPEN Opening
SQRT Square Root CLOS Closing
LINSCL Linear Scale OPCL Open-Closing
LINCOMB Linear Combination CLOP Close-Opening
SOBEL Sobel Gradient OPREC Open with Reconstruction
PREWITT Prewitt Gradient CLREC Close with Reconstruction
AND And Planes HDOME H-Dome
OR Or Planes HBASIN H-Basin
CL Clip Low CH Clip High
LAWB Laws Textural Operator S3T × L3 LAWC Laws Textural Operator L3T × E3
LAWD Laws Textural Operator E3T × E3 LAWE Laws Textural Operator S3T ×E3
LAWF Laws Textural Operator L3T × S3 LAWG Laws Textural Operator E3T × S3
LAWH Laws Textural Operator S3T × S3



by another gene before anything reads from it. Genie performs an analysis of
chromosome graphs when they are created and only carries out those processing
steps that actually affect the final result. Therefore, the fixed length of the
chromosome acts as a maximum effective length.

2.3 Backends

Complete classification requires that we end up with a single binary-valued out-
put plane from the algorithm. It would be possible to treat, say, the contents of
scratch plane 0 after running the chromosome algorithm, as the final output from
the algorithm (thresholding would be required to obtain a binary result). How-
ever, we have found it to be of great advantage to perform the final classification
using a non-evolutionary algorithm.
To do this, we first select a subset of the scratch planes and data planes

to be answer planes. Typically in our experiments this subset consists of just
the scratch planes. We then use the provided training data and the contents of
the answer planes to derive the Fisher Discriminant, which is the linear com-
bination of the answer planes that maximizes the mean separation in spectral
terms between those pixels marked up as “true” and those pixels marked up
as “false”, normalized by the “total variance” in the projection defined by the
linear combination. See [14] for details of how this discriminant works.
The output of the discriminant-finding phase is a gray-scale image. This is

then reduced to a binary image by using Brent’s method [15] to find the threshold
value that minimizes the total number of misclassifications (false positives plus
false negatives) on the training data.

2.4 Fitness Evaluation

The fitness of a candidate solution is given by the degree of agreement between
the final binary output plane and the training data. This degree of agreement
is determined by the Hamming distance between the final binary output of the
algorithm and the training data, with only pixels marked as true or false con-
tributing towards the metric. The Hamming distance is then normalized so that
a perfect score is 1000. To put this in a more formal/mathematical context. Let
H be the Hamming distance between the final binary output of the algorithm
and the training data, with only pixels marked as true or false contributing to-
wards the metric, let N be the number of classified pixels in the training image
(i.e. pixels marked as either “true” or “false”) and let F be the fitness of the
candidate solution.

F = (1− (H/N))× 1000 (1)

2.5 Software Implementation

The genetic algorithm code has been implemented in object-oriented Perl. This
provides a convenient environment for the string manipulations required by the



evolutionary operations and simple access to the underlying operating system
(Linux). Chromosome fitness evaluation is the computationally intensive part of
the evolutionary process and for that reason we currently use RSI’s IDL language
and image processing environment. Within IDL, individual genes correspond to
single primitive image operators, which are coded as IDL procedures, with a chro-
mosome representation being coded as an IDL batch executable. In the present
implementation, an IDL session is opened at the start of a run and communi-
cates with the Perl code via a two-way unix pipe. This pipe is a low-bandwidth
connection. It is only the IDL session that needs to access the input and training
data (possibly hundreds of Megabytes), which requires a high-bandwidth con-
nection. The Aladdin training data mark-up tool was written in Java. Fig. 2
shows the software architecture of the system.

3 Why Golf Courses?

The usefulness of devising algorithms for the detection of golf courses may not, at
first, seem apparent (except to a manager, perhaps!). However, due to the nature
of golf courses and their characteristics in remotely-sensed data, they are of great
use in testing automatic feature-detection systems, such as described here. They
possess distinctive spectral and spatial characteristics and it is the ability of
feature-detection algorithms to utilize both these aspects that we seek to test.
It is also useful that there exists a great deal of ground truth data available:
many golf courses, for the benefit of low-tech managers, are marked on maps. In
addition, golf courses usually possess a well-known, particular type of vegetation
and it is rare to find information regarding specific vegetation types on maps.
Fig. 3 (a) shows a map of NASA’s Moffet Field Air Base, clearly showing the
position of a golf course. Fig. 3 (b) shows a false color image of some remotely
sensed data of the same region. The airfield and golf course are clearly visible.

4 Remotely-Sensed Data

The remotely-sensed images referred to in this paper are 10-channel simulated
MTI data, produced from 224-channel AVIRIS data, each channel having 614×
512 pixels. The images displayed are false-color images (which have then been
converted to gray-scale in the printing process). The color mappings used are
the same for all images shown (an exception being Fig. 1 where the false-color
image has had a red and green overlay, corresponding to “false” and “true”
pixels, as marked by the human analyst). The particular color mappings used
here involve averaging bands A and B for the blue component, bands C and D
for the green component and bands E and F for the red component. In addition,
the images have been contrast enhanced. The choice of color mappings was
arbitrary, in that it was a personal decision made by the analyst, made in order
to best “highlight” the feature of interest, from his/her perspective and thus
enable him/her to provide the best possible training data. This choice of color-
mappings, together with a contrast-enhancement tool, are important and very



(a) (b)

Fig. 3. (a) Map of NASA’s Moffet Field Air Base, showing a golf course (available at
http://george.arc.nasa.gov/jf/mfa/thesite2.html) (b) Image from remotely-sensed data
of NASA’s Moffet Field Air Base

useful features of Aladdin. For more details regarding MTI data, the interested
reader is referred to [16].
Figs. 3(a), 4(a) and 5(a) are data taken over an area of NASA’s Moffet Field

Air Base in California, USA. Fig. 3(a) is a sub-set of the data shown in Fig. 4(a).
Figs. 3(a) and 5(a) are non-adjacent regions of the original data. These sub-sets
of the data contain a lot of different features, but, of course, have a common
feature of interest: golf courses.

5 Searching for Golf Courses

We reserve the data described above (Fig. 3(a)) for testing an evolved golf-
course finder algorithm and set the system the task of finding a golf course on
some other data. This data, showing the “truth” as marked out by an analyst,
is shown in Fig. 1. The golf course area has been marked as “true” and most
of the remaining data has been marked as “false”. The system was run for 400
generations, with a population of 100 chromosomes, each having a fixed length of
20 genes. At the end of the run the best individual had a fitness of 966 (a perfect
score would be 1000). This fitness score actually translates into a (in sample)
detection rate of 93 % and a false alarm rate of 18 × 10−3 %. The results of
applying the best overall algorithm found during the run to the data used in the
training run are shown in Fig. 4.
It can be seen that the algorithm has been able to successfully detect the

golf course and has not detected any of the other features within the image.



(a) (b)

Fig. 4. (a) Image of training data (b) Result of applying algorithm found to training
data

In order to test the robustness of the algorithm found, it was applied to out-
of-training-sample data, as described previously, and shown in Fig. 3 (b). The
results are shown in Fig. 5.

(a) (b)

Fig. 5. (a) Image of out-of-training-sample data (b) Result of applying algorithm found
to out-of-training-sample data



It should be noted that the data shown in Fig. 5 covers a greater area than
shown by the map in Fig. 3 (a). It can be seen that the algorithm has successfully
found the golf course shown on the map. It can also be seen that the algorithm
has detected other golf courses. On closer examination of the data, it would
appear that further golf courses do, in fact, exist at those locations. It can also
be seen that the algorithm has not found any spurious features.

The “short” (redundant genes stripped out) version of the chromosome found
is detailed below.

[LAWG rD2 wS0] [OPREC rD3 wS3 5 1] [ADDP rS0 rS3 wS1] [ADDP rS1
rD6 wS1] [LAWE rD6 wS4] [LAWG rD6 wS0] [OPCL rS4 wS3 1 1] [DIL rS1 wS1
1 0] [OPREC rS1 wS1 5 0] [MEDIAN rS1 wS2 1] [LAWH rD2 wS4]

A graphical representation of the algorithm found is shown in Fig. 6. Note
that the circles at the top of the graph indicate the data planes input to the
algorithm (in this case only 3 data planes out of a possible 10 have been selected),
the 5 circles in the center represent the scratch planes and the circle at the bottom
represents the final, binary output of the overall algorithm. The operations above
the line of scratch planes represent that part of the overall algorithm incorporated
in the chromosome. The operations below the line of scratch planes represent the
optimal linear combination of scratch planes and intelligent thresholding parts
of the overall algorithm.
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It is interesting to have some kind of objective measure of the algorithm’s
performance on the out-of-training-sample data. To this end an analyst marked
up training data (i.e. true and false) for this data, with respect to the golf courses
present. This enabled determination of a fitness for the algorithm on this data
as well as detection and false alarm rates. The fitness of the algorithm was 927,
the detection rate was 85 % and false-alarm rate was 3× 10−3 %.

6 Comparison with Other Techniques

In order to compare the feature-extraction technique described here to a more
conventional technique, we used the Fisher discriminant, combined with the in-
telligent thresholding, as described previously, to try and extract the golf courses
in the images shown/described. This approach is based purely on spectral in-
formation. On application to the data used in the training run (Fig. 4(a)), this
“traditional” approach produced a result having a fitness of 757 (with respect
to the training data/analyst-supplied interpretation), which translates into a de-
tection rate of 52 % and a false-alarm rate of 14 × 10−2 %. On application to
the out-of-training-sample data, the result had a fitness of 872, which translates
into a detection rate of 75 % and false-alarm rate of 31× 10−2 %. Both of these
results are significantly below the performance of the results produced by the
Genie system described here.

7 Conclusions

A system for the automatic generation of remote-sensing feature detection algo-
rithms has been described. This system differs from previously described systems
in that it combines a hybrid system of evolutionary techniques and more tradi-
tional optimization methods. It’s effectiveness in searching for useful algorithms
has been shown, together with the robustness of the algorithms discovered. It has
also been shown to significantly out-perform more traditional, purely-spectral
approaches.
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